THERMOELASTIC STRESSES IN
PIECEWISE-UNIFORM STRUCTURES

T. G. Beleicheva UDC 517,949.8:537,319

Many microelectronic devices can be considered as piecewise-uniform structures consisting of ma-
terials having different coefficients of thermal expansion and elastic constants., As a result of a difference
between operating temperatures and the temperature at which the device was manufactured, large thermal
stresses can arise leading to cracking and loss of adhesion in the film —substrate system {1, 2], mechanical
rupture of alloy transistors [3, 4], and peeling of semiconductor crystals andthe production of cracks in them
during the bonding of semiconductor devices to their cases [5-7]. In addition, residual thermal stresses can
affect the operating parameters of the devices as a result of the stress dependence of certain physical prop-
erties [8~11]. In view of this it becomes necessary to calculate and analyze stresses in such composite me-
dia. Existing calculational models for the most part pertain to two-layer systems [10-17], Stress calcula-
tions have been performed in [3, 6, 18, 19] for systems with more than two layers by using hypotheses of
thin-beam theory. In actual semiconductor devices, however, the thickness of the structure may be commen-
surate with the length of the layers; in addition, the layers are generally of different lengths, and experiment
shows stress concentrations {20, 21] and the formation of cracks [3, 6, 7] close to the edges., All thisina
number of cases makes it impossible to employ calculations [3, 6, 18, 19]. The purpose of the present article
is to calculate stresses in piecewise-uniform systems, and from their analysis to estimate the reliability of
the functioning of the structures and the choice of appropriate construction and dimensions of the systems,
since other requirements (solubility, electrical properties, economy, etc.) may restrict the use of materials
which are ideally suited from the point of view of their coefficients of thermal expansion,

1. As a mathematical model applicable to the microelectronics of structures we choose a right circular
cylinder D of radius R and height H which is piecewise uniform both axially and radially, Figure la shows
a section 6 = const for 0 =r =R (region II) of eylinder D in cylindrical coordinates r, 8, z. The planes
8, and S, parallel to the base of D, and the cylindrical surface S; concentric with the lateral surface of D
divide D into six cylindrical and ring-shaped regions Dy, each of which is filled with a uniform isotropic
elastic medium characterized by a coefficient of thermal expansion oy, shear modulus Gy, and Poisson's
ratio vk, where k is the number of the region in Fig, 1a; k=1,2, ., ., 6.

The outer boundary S of body D is stress-free, and the conditions of hard contact are satisfied on 8y,
Sz, and Sg.

We consider the axisymmetric linear elasticity-theory problem of determining the state of stress of a
composite cylindrical body for a variationof its temperature by an amount AT, It is assumed that AT is uni-
form in D,

The model shown in Fig. 1a enables us to treat a variety of finite structures of various geometries,
some of which are shown schematically in Fig. 1b-f, The systems shown in Fig, 1b, ¢, i {continuocus
and discontinuous films on a substrate) and in Fig. le-h (fastening of crystals in instrument cases) have ap-
plications in microelectronics. The same system of coordinates is chosen for the models shown in Fig. 1b-I
as for the model in Fig, 1a,

In each of the regions Dy the Duhamel —Neumann equilibrium equations [22] in cylindrical coordinates
have the form

1 s ‘
Vu———+1_2V 61~O Vi 4 i 2v af =0, {1.1)
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where
Ce=gt+ +;, v=b+i2 2

Here u=u(r, z) and w = w(r, z) are, respectively, the r and z components of the displaceﬁent.

Since there are no external forces on the boundary S we have

0 (R, 2) =0, 1R, 3 =0.
Gz:(r7 —H)) = O, rz\s —H,) =0,

11 T, 11 ( 1.2)
Uzz(r: H5) = O, r,z(r, Ha) = 0.

The stresses and displacements are continuous at the boundary surfaces S;, S,, and Ss:

o.ufr, +0) = o, (r, —0), Talr, +0) = T, {r, —O).

u(r, +-0) = u(r, —0), w(r, +0) = w(r, —0),

G r, Hy +-0) =0, (n H;— 0), 71,,0.H;+0) =1, (. H, — 0), (1.3)
u(r, Hy + 0) =.u{r, Hy — 0), wir, Hy + 0) = w(r, Hy — 0),

G o+ 0,2 =0, (p—0,2), T.lp+0,2) =7, (p—0.2).
u(p + 0, z) = ulp — 0, 2), wlp + 0, 2) = wip — 0, z.

At r = 0 the conditions of axial symmetry are satisfied

u(0, z2) = 0, 0,,.(0, 3) =04 (0, 2). (1.4)

Here oyyplr, z), ogglr, z), and oz (r, z) are, respectively, the normal radial, tangential, and axial stresses;
Trz(r, z) is the tangential stress. The parameter AT is contained in the differential expressions of Hooke's
law for the normal stresses [22], The parameters oy, v, Gk, AT, R, p, and Hk are given, It is required
to find the functions u(r, z) and w(r, z) in regionIl: 0 =r =R, —H; <z <H;,

2, The linear boundary-value problem (1,1)-(1.4) is reduced to a variational problem for the minimum
of the potential energy W of the system, The expression for W for axisymmetric deformation is given in
[23]. In region II primary and dual rectangular meshes are superimposed as in [23]. Then W becomes a func-
tion of the discrete values uj j and w; i? where i and j are, respectively, the numbers of the horizontal and
vertical lines of the prlmary mesh [l =i=<p,1=j=<q,p=1+ E (lHkl/hZ + (H; —Hg)/hS), g = 1 + R/h).

h=1,3
Here hy and hy are the steps of the primary mesh in r and z, respectively (the step h, is constant; step
hlz‘I corresponds to region Di; hl = h%, b} =hj, b = hf),

The following approximations of derivatives were used:
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dw Wiy Wi dw Wi Wiey;
, o~ I T Hh
The approximate expression for Wg. for an interior cell of region II (a cell formed by lines of the pri-
mary and dual meshes) has the form

Wi] = aJ n,k [Ln (ui,3) + P, (w4, J)]o

fbge

+ b 1L (i) + PL(wis)] +cin k=1, 2,..., 6,
where Ly and Pp are certain linear, difference operators, and aj,n,ks bj k, and ¢j,k are constant within
each cell, The superscript ! refers to one of the four cells surrounding the interior point (i, j).

The expression for W was obtained by summing expressions of the form (2.1) over i, j, and I (for
points (i, j) € S the superscript I = 1, 2).

Difference equations approx1matmg the original differential equations (1,1)-(1.4) with an accuracy of
the order O(h%, h= max (by, Z), were obtained from the stationarity conditions

6W/6u,-,j = 0; (2 2)
c?W/aw,-,,- = 0. (2.3)

In particular, condition (2.2) for point A (cf, Fig, 1a) has the form
%71 )h';’ G,
(2-4){2 [G'_—il)—ﬁrh } 2 it 4 2 [ E R (14 i)
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_EAh(a—a»k)h]l e Ll Y178
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B=1,2
F (A [(L — 6vy) — j (1 —dvo)] — Ay [(4 — 2vy) — J (4 — 4w} Wiy
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(= (G —Gy) — 2f (o~ A i34 — [(7 — 1) (GL — Gy)
—2(j — 2) (2 — %) Wi g-1 - [(F — 1) Ay -+ 2%0] Wity jaa—1(GG—1) Ry 42304
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=4(j—1) AT[kga A {1+ )kt — 3 A {4 vp) ahhf], (2.4)

R=2,1

where

G h
hp = R Le oy = ApVas Py = A {1 — Vi)
- L= 2v, 47 M &

By making appropriate replacements of the constants in (2.4) the equations 8W/8ui,j = ) are obtained
for boundaries S;, S,, and 83, and for interior points of region Dy {e.g., for region Dy it is necessary to set
Qk = 04, Gk = Gh Vik = Vg, hlz,(= hjz: k=1,2,3, 4),

A nine-point difference scheme is obtained, All the unknowns are grouped in vertical lines in column
vector form

Us,j
Wi, j
Usg,j

We,jy.

=
I

Up,j
Wp,j
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A system of 2 x p x q linear inhomogeneous algebraic equations in the same number of unknowns uj j
and wj j isformed by varying the subscripts in Eqs, (2.2) and (2.3), starting with j=1 for i=1,2,...,p
etc. in order of increasing j for the same values of i, so that to each uj,j there correspond [2p(j —1) +

2i — 1] equations, and to eachwi j [2p(j — 1) + 2i] equations.

This order of arranging the unknowns and equations produces a block tridiagonal form of matrix A of
the coefficients of the unknowns uj j and wj j. This makes it possible to solve the system of equation nu-
merically by the successive line overrelaxation method [24], The solutions for the diagonal blocks of matrix
A are found by the Gauss single-division scheme [25]. The condition for ending the iterative process has the
form '

8= maxl'q(m“)(t) —n(m)(l)_l <e, m=1,2,...,

where € is the accuracy of the iterations,
The error of the solution was estimated by calculating the quantity
¢ = nzla;x ((pi,jlwi,j)’ Qi,; = | u’f.] l/, ”
$ij =] wh; — wis| /] wh ,'
h h

i,j° Wl,j
spectively.

where u; and ulh], w2hj are the solutions obtained for mesheswith steps hy, hlé, and 2h,, 2h1z<, re-

3. The algorithm described above was programmed for the model shown in Fig, 1a, By starting from
one program it was possible to calculate a variety of final systems of various geometries, in particular the
systems shown in Fig. 1b-h, k, I, The calculations were performed on a BESM-6 computer; the optimum
relaxation parameter [24] wopt = 1.9 was chosen by numerical experiments. The initial iteration vector 'n
was chosen with zero components for all j.

The program was first tested on a number of models of cylinders: "unheated,” uniform, symmetric
with respect to the center of mass, For AT = 0 ("unheated® cylinder) the calculation gave zero solutions
for all Ui js Wi,j» Orrs 0608, Ozz, and Tpz. In the calculationof uniform cylinders (o = @, vk = v, Gk = G,
k=1,2,...,6) displacements were obtained corresponding to free contraction and zero stresses with a
maximum error of ~ 0.02 kg/mm?, In cylinders which were symmetric with respect to the center of mass
(Flg. lc-e, k,. 1) agreement to eight significant figures was found in the values of the stresses along lines
i equidistant from the center of mass of D,

Figure 2 shows curves of the distribution of errors ¢j ; (solid curves) and ¥j j (opencurves) alongthe
radius for the system shown in Fig, 1g (region Dy — silicon; D,, D;, D, — lead borate glass; Dy, Dy — Poly-
core), Points 1 and 2 refer, respectively, to sections z = 0 and z = 0.004, The system was cooled by AT =
470°C and had the following dimensions (here and later in cm): R = 0.3, H; = 0,024; H; = 0.006; H;-H; = 0,175,
The solutions obtained on two meshes with the total number of points 110 and 399 were compared, In spite of
the fact that one of the meshes was rather coarse, the value of ¢ did not exceed 3%.

Our results were compared with solutions existing in the literature, In the absence of radial boundaries,
and for 2R/H > 1 we have the structure of [18] (Fig. 1c). Table 1 compares our results with those of [18] for
a Si—Au—Kovar system cooled by AT = 400°C and having the following dimensions: R = 0,1, H; = 0,03,
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Hz = 0,001, Hz-Hg = 0,012, In the calculation with the model in [18] Ey/(1 — vk) was used instead of Ej,
where Ex is Young's modulus. In the absence of axial boundaries and for 2R/H > 1 we obtain the radially
composite disk shown in Fig, 1d whose solution is given in [26], Table 2 compares our values of the stresses
ory and ogg in kg/mm? at points along the radius of the central z cross section with those calculated from
the equations of [26] for an Si-Mark K-81-39 plastic system (the inner solid cylinder is Si), The system was
cooled by AT = 130°C and had the following dimensions: R = 0.2, p = 0.1, H = 0,03. Tables 1 and 2 show that
our results are in good agreement with those of [18, 26],

It should be noted that in contrast with [18, 26] our procedure makes it possible o treat systems with
2R/H =~ 1, and to obtain coordinate distributions of both tangential and all the components of the normal
stresses, while only the z distribution of oy can be calculated by the method in [18], and only the r dis-
tribution of opr and ogg by [26]. '

As an example Fig. 3 shows the calculated values of the stresses for the nonuniform structures shown
in Fig. 1g (system A) and Fig. 1h (system B), Systems A and B correspond to the two limiting cases of fas-
tening an Si crystal (region D;) to a Polycore case (regions D; and Dg) of the integral scheme: in A the crys-
tal is completely embedded in lead borate glass (regions Dy, D3, and D,) to the level of its upper surface; in
B the crystal is in contact with glass (regions Dy and D,) on only one surface, Table 3 lists the values of
the material constants used, AT, and the dimensions of the systems,

Figures 3a-c show, respectively, the radial distributions of the normal stress oyy for —Hy <z <0,
0 <z < Hy, and Hy < z <H;, Figure 3d shows the dependence of the tangential stress 7prz on r/R. Inthe
layer z < 0 the silicon and glass are under compression (Fig, 3a)., The state of stress in Si up to r/R ~ 0.3
is planar and practicallythe same in system A (curves 1, 2) as in B (curves 3, 4), The normal tensile stress
in the glass layer (0 <z =60 um) becomes compressive for r/R ~ p (Fig. 3b). The level of dangerous ten-
sile stresses in the glass layer in system B (curves 3, 4) is somewhat higher than in A (curves 1, 2). In
Polycore (Fig. 3c) there are no significant differences between system A (curves 1, 3, 5) and system B
(curves 2, 4, 6). The layers of Polycore adjoining glass (curves 1, 2) are under tension, but close to the
free boundary (curves 5, 6) under compression. The shear stresses (Fig. 3d) in systems A (curve 1) and B
(curve 2) are comparable in magnitude with the normal stresses and are concentrated about the point r = p,
z = 0. The most dangerously stressed region is in glass adjacent to the point r = p, z = 0, The large value
of Ty, indicates the possibility of the separation of the silicon crystal from the glass, Figure 3 shows that
embedding the crystal in glass (system A) is preferable to attaching it to the surface (system B). The stress
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in Si resulting from setting crystals in the case is two orders of magnitude above that produced in Si in ob-
taining a continuous layer of 8iO, [15, 17], It should be noted that it is impossible to determine the stress—
strain state in the vieinity of nodal points with complete reliability if the edge effect is damped out (Fig, 3b)
within the limits of one step of the mesh,
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